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– Biostatistician at Celgene Corporation, with salary and stock compensation.

 Blog at resourcetepee.com. Some resources from that blog will be referenced during 
this tutorial. 

 The material presented here represent the views of the presenter and not those of the 
Celgene Corporation

– Slides have generic issues and details on Observational Data, some material from his website and a 
technical report he authored (to be published). 

Disclosures
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 About Observational Data
 General approaches for valid inferences not using Propensity scores

– Notes on Missing Data, Covariate Adjustment, Exact Methods

 Propensity score based methods with emphasis on the setting with > 2 groups
– Balancing scores
– Weights conditional on treatment contrasts
– IPTW weighting, Matching and Sample size
– Simulation example

 Questions and Discussion

Outline
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Real World Data Issues and Positives

 Missing data requiring imputation methods (see 
left from Rifkin et al.*).

 Significant inherent differences between patient 
cohorts as they are channeled to therapies 
based on the patient’s profile and the 
patient/physician interaction.

 Without a pre-specified pathway through the 
data there can be publication bias due to 
unpublished results and inflation in false positive 
rates.

 Positives to real world data include 
– very little filtering out of patients though 

inclusion/exclusion criteria and 
– with retrospective data there are no biases driven 

by known hypotheses.
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Clinical Trials versus Observational Data

Clinical Trials

 Usually very controlled in order to reduce noise 
and detect differences effectively. Project 
management intensive.

 Specified Interventional Agents

 Limited contexts such as those at diagnosis, 
maintenance and after relapse. 

 Somewhat strict regimen schedules, dosage,  
and treatment duration. 

 Prospectively Collected with near mandatory 
collection and recording of items in a pre-
designed Case Report Form. Very limited 
missing data.

Observational Data

 Data includes sources like electronic medical 
records and registries.  Data handling and 
analysis intensive.

 Typically non-interventional and physician is free 
to prescribe at will.

 Can record patient experience from diagnosis 
through progressions and death.

 Regimen schedules, dosage, treatment 
durations and combinations are highly variable.

 Transcription of available retrospective and 
prospective data. Missing data at baseline 
especially “baselines” during the course of 
disease such as the start of maintenance or 
post-relapse therapy.
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 We will consider hypothetical real world oncology data with patients receiving an 
Immune drug or a Chemotherapy. For explanatory ease we will consider relative 
medians instead of the hazard ratios which are usually reported.

 Physicians channel older patients to Immune drug due to better tolerability. Those 
receiving the immune drug are on average 10 years older than those receiving the 
chemotherapy.

 Lets say, that for a 10 year older population, there is a drop in the median survival by 8 
months in the aggregate curve.

 An unadjusted analysis might report medians of 60 months and 56 months for the 
chemo and the immunotherapy groups, whereas the adjusted analysis would have 
reported median differences of 4 months in the opposite direction of 56 versus 60. 

 The adjusted analysis corrects the chemo group down by 4 months and the immune 
group up by 4 months to account for the 8 month artifact due to age differences.

An Illustrative Example 



 Inferential comparisons between cohorts are not valid unless we can argue that all 
relevant patient characteristics differentiating the groups and possibly effecting 
outcome have been collected, allowing us to adjust for these differences when 
comparing cohorts on outcome.

 A fire-wall* between determining characteristics differentiating groups and the eventual 
outcome analysis. This and population carve-outs, endpoints, hypotheses and 
analyses, which are primary, should ideally be pre-specified. 

 Start with the screening of factors differentiating cohorts using univariate tests and 
multivariate variable selection on patient characteristics predicting cohort membership.

 Force in variables predictive of outcome per expert opinion to selected variables.
 Bring in the firewalled outcome data and conduct inferential analyses adjusting for the 

factors above or analyze differences between culled matched sets. 

Framework for Inferential Analyses With Real World (RW) Data

see Levenson and Yue, J Biopharm Stat. 2013;23(1):110-21

https://www.ncbi.nlm.nih.gov/pubmed/23331225


 Obtains the predictive distribution of the missing data given the remaining 
patient data.

 Imputes missing data repeatedly using such predictive distributions and 
creates Multiply Imputed (MI) datasets. Imputes a random smear.

 Inferences from each imputed dataset are combined and reported.
 Analysis under multiple imputation is robust under less restrictive 

assumptions of Missing at Random (MAR) 
 Methods under MAR avoid understating data variability unlike an 

imputation method which plugs in a specific value instead of a smear.
 ‘ANCOVA’ like conventional inferential survival analysis in RW setting 

follows.

Data Imputation in Analyses: Imputation Theory
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Direct Adjusted Survival Curves using Average Survival Curve Over 
Covariate Values Over Entire Dataset

Unstratified - Forced Proportional Hazard 
and Identical Baseline Hazard

Stratified – Differing Baseline Hazards 
Across Groups

Here i=0 and i=1 are the strata defined by the treatment 
variable. Both analyses use averaging of survival curves 
over for all patients (entire covariate profile set) instead of the
the survival curve for average covariate values.
proc phreg data=spm;
strata trt;
model spmm*spm_invas(0)=  

diag pinvas ;
baseline out=stratbase survival =

_all_ / diradj ; 
run;

proc phreg data=spm;
class trt;
model spmm*spm_invas(0)=  trt diag

pinvas ;
baseline out=covbase survival = 

_all_ / diradj group=trt; 
run;

Zhang Xu et. al. (2007). A SAS macro for estimation of Direct Adjusted Survival Curves based on a 
stratified Cox Regression Model. Computer methods and programs in biomedicine. 88: 95-101. 9



Code for Covariate Adjusted Inferential Analysis: Generating 
Adjusted Survival Curves

/&nimpute: number of imputations;
&imputvar: list of variables used in the 
imputation (include all the variables 
selected from the variable selection process, 
but add more common variables);
&classvar: list of class variables in 
&imputvar;
&strata: variable representing groups in the 
direct adjusted survival plot;
&adjcov: list of covariates to be adjusted in 
Cox model;
&classAdjcov: list of class covariates in 
&adjcov;*/

proc mi data=&indata nimpute=&nimpute
seed=&seed out=_MIdata;

class &classvar;
fcs nbiter=20 logistic(&classvar / 
likelihood=augment);

var &imputvar;
run;

• get direct adjusted survival 
probabilities by _imputation_;

proc phreg data=_MIdata;
by _Imputation_; 
class &strata &classAdjcov / 

param=ref;
model &time.*&censor.(0) = 

&adjcov/ ties=Efron;
strata &strata;
baseline covariates=_MIdata

out=_est survival=_all_ / diradj;
run;

proc sort data=_est(where=(&time>0)) 
out=_estD; 
by &strata &time _Imputation_; run;

proc mianalyze data=_estD;
by &strata &time;
modeleffects Survival;
stderr StdErrSurvival;
ods output ParameterEstimates=_est1;

run;
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Code for Covariate Adjusted Inferential Analysis: Generating 
Inferential Statistics

ods output LSMEstimates=LSMEsts;

proc phreg data=_MIdata;
by _Imputation_; 
class &strata. &classAdjcov / 

param=glm;
model &time.*&censor.(0) = 

&strata &adjcov/ties=Efron covB;
lsmestimate &strata

'Abnormal vs Normal' 1 -1; 
run;

proc sort data=LSMEsts out=_estHR; 
by StmtNo Label _Imputation_; 

run;

proc mianalyze data=_estHR;
by StmtNo Label;
modeleffects Estimate;
stderr StdErr;
ods output 

ParameterEstimates=_estHR1;
run;

data _estHR2;
set _estHR1;
HR = exp(Estimate);
HRLowerCl = exp(LCLMean);
HRUpperCl = exp(UCLMean);
pval = Probt;
keep StmtNo Label HR HRLowerCl

HRUpperCl pval;
run;
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Adjusted Inferential Analysis for those  Normal Versus those 
Abnormal (De-identified) on Reported Measure
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A Disease 
Related Factor

A Frailty or Co-
morbidity Factor

N Control N Target Therapy Matched per 
Group

Level 1 Level 1 65 32 32
Level 2 Level 1 21 28 21
Level 3 Level 1 18 12 12
Level 1 Level 2 27 22 22
Level 2 Level 2 29 40 29
Level 3 Level 2 31 51 31

Totals 191 184 147

Exact Matching
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Can be useful when data on all except for a few core factors are unavailable.
Should be the variables most relevant to outcome. 
Often erroneously, something perhaps unrelated, such as gender or race is used.
Very easy to communicate to non-statisticians. Leads to loss of data records. Though stratified 
analyses could be conducted.



 For a large number p of covariates X, the results assume that the probabilities of receiving the 
k treatments (z=1, 2 …k) can be determined without bias. 

 Consider vector propensity score 
– es(x)T = 𝑒𝑒1𝒔𝒔 , 𝑒𝑒2𝒔𝒔, . . , 𝑒𝑒𝑘𝑘𝒔𝒔 , with 𝑒𝑒𝑖𝑖𝒔𝒔 𝒙𝒙 = 𝑃𝑃(𝑧𝑧 = 𝑖𝑖|𝒙𝒙, 𝒔𝒔) for a given x. 

 Proof of the result
– Let es(x) equal some vector value g and 𝜒𝜒𝒈𝒈 be the set of all covariate values in 𝑅𝑅𝑝𝑝 such that es(.) = g. 
– Then conditional on es(x) taking a value g, x can vary over the set 𝜒𝜒𝒈𝒈 with the probabilities of 

treatment 𝑃𝑃(𝑧𝑧 = 𝑖𝑖|𝒙𝒙 𝜖𝜖 𝜒𝜒𝒈𝒈) invariantly equal to gi
– This makes treatment independent of covariate values conditional on es(x). 

 Results are extensions of Rosenbaum and Rubin (1983) to k > 2  in Imai and Van Dyke (2004). 
Outcome differences on balancing are interpretable as a difference in treatment effects with 
each effect being the aggregate had all subjects in the population received that treatment 
(ATE).

 We add a limiting conditioning s referring to a curated sampling process in observational data 
to be described in our next slide. 

Propensity Score (PS) Methods -
More than 2 groups
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 Observational data sets, not very much unlike those in clinical trials, can often be just 
as curated though the nature of the curation differs.

 A non-random sampling process characterized by
– Data acquired depends on availability of records in electronic form, data purchase costs, data quality, 

availability of certain diagnostic data and time-frames for data pre-processing such as anonymization 
and IRB approvals for use. 

– Separate observational data collection, prospective or retrospective, conducted to provide one or 
more quasi-controls to interventional single arm trials requiring similar contexts.

– Cohort sizes likely unrelated to any past, current or future population proportions of subjects on the 
therapeutic options studied. 

– The number and identity of therapeutic groups of interest can be influenced by resources available for 
data agglomeration and the commercial and research interests of the investigators. 

Curated Sampling in Observational Data
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 With many therapy options, one investigator may do a data carve-out of subjects on 5 
therapy groups and another may pick 3 or 4 which may or may not overlap with the 5. 

 Relative group effects of interest may involve further subsets, such as pairwise 
comparisons of the groups or the comparison of the outcome in one group to that in 
two others. 

 Such relative groups effects are usually assessed using contrasts, in general settings 
where bias is not expected, usually among randomized groups. 

 We refer to contrasts in the observational settings having neither randomization nor 
random sampling, as curated contrasts. 

 The contrasts we use are a string of coefficients, with one for each treatment such that 
the sum of the contrasts is zero and the sum of the absolute values of the contrasts 
are equal to 1.0. 

– Example [0.5, -0.5, 0] and [0.5, -0.25, -0.25] for three treatment groups.

Curated Contrast
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 Consider two vector propensity probabilities (for some two subject given their 
covariate profiles) of having treatments 1 to 3 of

1. {0.1, 0.2, 0.7} and {0.2, 0.4, 0.4} 
2. Then the contrast [0.5, -0.5, 0] to compare treatments 1 and 2 ,
3. would have had balancing propensity scores {0.33,0.66}  for both subjects conditional on the 

chosen inference if our sampling process did not collect or consider treatment 3.

 Inverse propensity weighting in analysis of outcome, conditionally (# 3 above) requires 
equal weights while unconditionally (# 1 above) the weights are larger by a factor of 2 
for the first subject.

 Rather Odd!

Conditioning on the Contrasted Inference as Well
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 For k groups, a contrast is defined as 
– a vector  𝒄𝒄𝑇𝑇 = 𝑐𝑐1, 𝑐𝑐2, . . , 𝑐𝑐𝑘𝑘
– where ∑𝑖𝑖=1𝑘𝑘 𝑐𝑐𝑖𝑖 = 0 and ∑𝑖𝑖=1𝑘𝑘 𝑐𝑐𝑖𝑖 = 1 .

 Let 𝐶𝐶𝑘𝑘 be the set of all c meeting these conditions. 
 For propensities {0.1, 0.2, 0.7} and contrast [0.5, -0.5, 0], conditionally we get

𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖∗ 𝑐𝑐𝑖𝑖
∑𝑖𝑖=1
𝑘𝑘 𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖∗ 𝑐𝑐𝑖𝑖

= {0.33,0.66}

 So,  absolute value 𝑐𝑐𝑖𝑖 is interpretable as the proportion randomly selected in Group i
independent of the sampling process. 

 The probability 𝑃𝑃 𝑧𝑧 = 𝑖𝑖 𝒄𝒄 = 𝑐𝑐𝑖𝑖 . 
 We will refer to inferences drawn in this setting as Curated Contrast Effects. 

Curated Contrast Effect (CCE)
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Unconditional and Conditional Weights

Unconditional on Contrasted Inference

 Balancing Score

es(x)T = 𝑒𝑒1𝒔𝒔, 𝑒𝑒2𝒔𝒔 , . . , 𝑒𝑒𝑘𝑘𝒔𝒔 , with 

𝑒𝑒𝑖𝑖𝒔𝒔 𝒙𝒙 = 𝑃𝑃(𝑧𝑧 = 𝑖𝑖|𝒙𝒙, 𝒔𝒔) for a given x. 

 Expression for the Sample Weights
⇒ 𝑒𝑒𝑖𝑖𝑖𝑖 𝒙𝒙 =

𝑃𝑃(𝒙𝒙 𝜖𝜖𝜒𝜒𝒈𝒈|𝑧𝑧=𝑖𝑖,𝒔𝒔)𝑃𝑃(𝑧𝑧=𝑖𝑖| 𝒔𝒔)
𝑃𝑃(𝒙𝒙 𝜖𝜖𝜒𝜒𝒈𝒈| 𝒔𝒔)

⇒ 𝑃𝑃(𝒙𝒙 𝜖𝜖𝜒𝜒𝒈𝒈| 𝒔𝒔) =
𝑃𝑃(𝒙𝒙 𝜖𝜖𝜒𝜒𝒈𝒈|𝑧𝑧 = 𝑖𝑖, 𝒔𝒔)𝑃𝑃(𝑧𝑧 = 𝑖𝑖| 𝒔𝒔)

𝑒𝑒𝑖𝑖𝑖𝑖 𝒙𝒙

 Then the sample weight below will weight a covariate
profile in 𝒙𝒙 𝜖𝜖𝜒𝜒𝒈𝒈 such that it is not predictive of
treatment in the weighted sample.

𝑃𝑃(𝑧𝑧 = 𝑖𝑖| 𝒔𝒔)
𝑒𝑒𝑖𝑖𝑖𝑖 𝒙𝒙

Conditional on Contrast

 Balancing Scores
ecs(x)T = 𝑒𝑒1𝒄𝒄𝒔𝒔, 𝑒𝑒2𝒄𝒄𝒔𝒔 , . . , 𝑒𝑒𝑘𝑘𝒄𝒄𝒔𝒔 , with

𝑒𝑒𝑖𝑖𝒄𝒄𝒔𝒔 𝒙𝒙 = 𝑃𝑃(𝑧𝑧 = 𝑖𝑖|𝒙𝒙, 𝒄𝒄, 𝒔𝒔)

=
𝑃𝑃 𝑧𝑧 = 𝑖𝑖 | 𝒙𝒙, 𝒔𝒔 ∗ 𝑃𝑃(𝑧𝑧 = 𝑖𝑖 | 𝒄𝒄)

∑𝑖𝑖=1𝑘𝑘 𝑃𝑃 𝑧𝑧 = 𝑖𝑖 | 𝒙𝒙, 𝒔𝒔 ∗ 𝑃𝑃(𝑧𝑧 = 𝑖𝑖 | 𝒄𝒄)

 Expression for the Sample Weights for covariate 
profiles to make un-predictive of treatment 

𝑃𝑃(𝑧𝑧=𝑖𝑖| 𝒄𝒄,𝒔𝒔)
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝒙𝒙

for 𝑒𝑒𝑖𝑖𝒄𝒄𝒔𝒔 𝒙𝒙 as  above

𝑃𝑃(𝑧𝑧 = 𝑖𝑖| 𝒄𝒄, 𝒔𝒔) = =
𝑃𝑃 𝑧𝑧 = 𝑖𝑖 |𝒔𝒔 ∗ 𝑐𝑐𝑖𝑖

∑𝑖𝑖=1𝑘𝑘 𝑃𝑃 𝑧𝑧 = 𝑖𝑖 |𝒔𝒔 ∗ 𝑐𝑐𝑖𝑖
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The Sneetch* Example

 As you can see, in the world of the Sneetches 
there is perhaps only one differentiating factor.

 Note that the differentiating factors should 
plausibly have effect on outcome.

 In addition to a visitation by a dubious 
entrepreneur selling star-on machines, what is a 
little less known, is perhaps a less dubious pitch 
of hair restoration therapies to the Sneetches.

 We will look at balancing scores in this context 
for 3 treatments for hair growth where there are 
biases based on the Plain/Star Belly 
(Covariate).

Few unruly Strands

My Star On 
Machine

*Snapshot from goodreads.com 22



Illustrative Calculator*

Unconditional on Inference Conditional on Contrast Inference

The sum of weights in a group add up to the group sizes in this context, as is achieved in outcome analysis through the scaling of the 
inverse PS  weights by the average weight in a group.
*Interactive calculator is available at https://resourcetepee.com/free-statistical-calculators/observational-data/contrast-effects-in-curated-observational-data/
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https://resourcetepee.com/free-statistical-calculators/observational-data/contrast-effects-in-curated-observational-data/


 The unconditional weights are consistent with stabilized weights for >2 groups and consistent 
with the contrast conditional weights only for 2 groups and the contrast [0.5, -0.5].

 IPTW: let Zi be an indicator variable denoting whether or not the ith subject was treated; 
furthermore, let pi denote the propensity score for the ith subject then the inverse probability of 
treatment weighting wi is defined as 

 wi =1/pi for a target therapy  subject
wi = 1/(1-pi ) for a control subjects

Stabilized weights
 wi = P(subject in Target)/pi for a Target Therapy  subject

wi P(subject in Control)/(1-pi ) for a control subjects

Note: P(subject in Target) = (number of Target subjects) /(number of Target subjects+ number of Control subjects)

Propensity score (p), logit and inverse probability of treatment 
weighting (IPTW)
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The Sneetch* Example: Simulation** Study

1. Simulate covariate values on a million subjects 
in the population

2. Generate treatments using coefficients 
predicting treatment

3. Generate response (> 25% reduction), a 
continuous outcome (% reduction in bald area) 
and time-to event outcome (time to complete 
baldness)

4. Pick two curated samples with one selecting 
100, 220 and 310 simulated subjects and other 
selecting after replacement 200, 125 and 75 
having treatments 1, 2 and 3 respectively

5. Find conditional (one per contrast) and 
unconditional weights (one for both contrasts) 

6. Use in outcome models and compare estimated 
treatment effects versus parameters in the 
simulation of outcome in #3 above.

Three Hair Growth 
Treatments

Plain or
Star Belly
~ Bernoulli
with p  =0.4

Belly 
Volume
~ Exponential
With Mean of
50 cu. inches.

Bald Spot 
Luminosity
~ Exponential
with a mean 
of 0.5 watts

*Snapshot from goodreads.com

**The complete derivations of the weighting conditional on the
Contrasted inference and the proposed simulation are in a 
technical report by the author on Research Gate. 25



Treatment Bias Model X1 (Belly Star) X2 (Belly Volume) X3 (Bald Patch Luminosity)

LOGIT (Trt 1 vs Trt 2)

Odds Ratios 1.25 0.95 1.05

Coefficients 
Corresponding to Odds 
Ratio Above

0.2231 -0.0513 0.0488

LOGIT (Trt 1 vs Trt 3)

Odds Ratios 0.9 1.10 1.2

Coefficients 
Corresponding to Odds 
Ratio Above

-0.1054 0.0953 0.1823

Simulation Parameters for the Treatment Bias Model.
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Covariate values generated for a million simulated subjects followed by Treatment by using 
the model coefficients above. 



Treatment Bias 
Model

Trt 1 vs Trt 2 
Contrast: 

[0.5, -0.5, 0]

Trt 1 vs Trt 3 Trt 1 vs {Trt2 and 
Trt 3}. Contrast: 

[0.5, -0.25, -0.25]

X1 (Belly Star) X2 (Belly Volume) X3 (Bald Patch 
Luminosity)

Odds Ratio of 
Response vs Non 
Response (X1)

1.6 1.4 1.497 1.05 0.95 0.8

Coefficients for 
LOGIT of X1 above

0.470 0.3365 0.4033 0.0488 -0.0513 -0.2231

Regression 
Coefficients for X2 
(Percent 
Reduction in Bald 
Area)

10 7 8.5 2 -1.5 -2.5

Hazard Ratio for 
Time to Complete 
Baldness (X3)

0.6 0.75 1.491 0.95 1.25 1.35

Coefficients for 
Cox Regression for 
X3 above

-0.5108 -0.2877 -0.3993 -0.0513 0.2231 0.3001

Simulation Parameters for the Outcome Models.
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Outcome values generated for a million simulated subjects.  For TTE, we used 5 year follow-up (20 Sneetch years), 
1.5 years uniform enrollment, exponential distributions and a baseline hazard (X1 =0 and X2 and X3 at mean values) 
corresponding to 3 years.



Population Parameters in Simulation Estimates (CI) Using Unconditional 
Weights (One per sample)

Estimates (CI) Using Weights 
Conditional on Inference (one per 

contrast and sample)
Treatment Bias 
Model

Trt 1 vs Trt 2. 
Contrast: 

[0.5, -0.5, 0]

Trt 1 vs {Trt2 and Trt 
3}. Contrast:

[0.5, -0.25, -0.25]

Trt 1 vs Trt 2. 
Contrast: 

[0.5, -0.5, 0]

Trt 1 vs {Trt2 and Trt 
3}. Contrast

[0.5, -0.25, -0.25]

Trt 1 vs Trt 2. 
Contrast: 

[0.5, -0.5, 0]

Trt 1 vs {Trt2 and Trt 
3}. Contrast: 

[0.5, -0.25, -0.25]
Curated Sample selecting 100, 220 and 310 simulated subjects in treatments 1, 2 and 3 respectively

Odds Ratio for 
Response (X1) 

1.6 1.497

Regression 
Coefficients for %  
Reduction in Bald 
Area (X2)

10 8.5

Hazard Ratio for 
Time to Complete 
Baldness (X3)

0.6 1.491

Curated Sample selecting 200, 125 and 75 simulated subjects in treatments 1, 2 and 3 respectively
Similar side-by-side assessment to the one above for the first curated sample

Parameters used and Estimates to be obtained using 
Unconditional and Conditional Weights in Simulation Study
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 Analytical assessment of variance across weighting schemes.
 Simulation of Matching using PS, and the conditional and unconditional weights are being planned.
 Sample size assessment under variable ratio matching using Lachin (2008) for Conditional 
Logistic regression for binary data are at: 
https://resourcetepee.com/free-statistical-calculators/observational-data/sample-size-for-matched-case-control-and-cohort-studies/



 Data with limitations. Considerable Missing data and Treatment bias issues. 
 Improvements may be possible through some standards, which do not increase 

administrative overload at clinics, or lead to the performance of unneeded procedures. 
 In regulatory setting may be useful for rare disease indications, support for accelerated 

approvals as an add on comparator to single arm interventional trials, and possibly for 
secondary label approvals.

 Pre-specified pathway through data for analyses to be credible, while specifying 
sensitivity analyses arounds variants on estimands and methods

 Blinding of analyst to outcome while decisions are being made about analyses 
 DONE! Some balding sneetches are waiting!

Final Notes on Observational Data 
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